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A wide range of plant bioactive components (phytochemicals) have been identified as having potential to modulate the processes
of fermentation in the rumen. The use of plants or plant extracts as natural feed additives has become a subject of interest not
only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential
oils) have recently been investigated for their methane reduction potential, there have not yet been major breakthroughs that
could be applied in practice. A key tenet of this paper is the need for studies on the influence of plant components on methane
production to be performed with standardized samples. Where there are consistent effects, the literature suggests that saponins
mitigate methanogenesis mainly by reducing the number of protozoa, condensed tannins both by reducing the number of
protozoa and by a direct toxic effect on methanogens, whereas essential oils act mostly by a direct toxic effect on methanogens.
However, because the rumen is a complex ecosystem, analysis of the influence of plant components on the populations of
methanogens should take into account not only the total population of methanogens but also individual orders or species.
Although a number of plants and plant extracts have shown potential in studies in vitro, these effects must be confirmed in vivo.

Keywords: ruminants, methane, tannins, saponins, essential oils

Implications

This review demonstrates that plant phytochemicals can
have important effects on rumen methanogens, either by
affecting methanogens directly and/or indirectly by affecting
rumen protozoa. Modulation of the rumen microbiota, inclu-
ding methanogens and protozoa, with plant extracts such as
saponins, tannins and essential oils has implications in
improvement of animal nutrition through decreased dietary
energy loss, and in limitation of the negative impact on the
environment through mitigation of methane production.

Characteristics of the rumen ecosystem in relation to
methanogenesis

The rumen ecosystem is one of the richest microbial environ-
ments, inhabited by numerous microorganism species including
roughly 1011 bacterial cells/ml of rumen fluid, roughly 106

protozoal cells/ml of rumen fluid, roughly 103 fungal cells/ml of
rumen fluid and roughly 109 methanogen cells/ml of rumen
fluid. Only ,10% of the microbial population of this eco-
system has been identified and described (Pers-Kamczyc et al.,
2011), mainly due to the difficulty with maintaining them in

in vitro culture. According to the literature data, the population
of methanogens is very important to rumen functioning.
Together with bacteria and fungi, methanogens are the earliest
colonizers of the rumen. Archaea can be found in the lamb
rumen as soon as 30 h after birth (Morvan et al., 1994). The
population of these microorganisms in lambs in the 1st week of
life was 104 cells/g of the rumen contents, whereas in the 3rd
week of life it was 108 to 109 cells/g (Skillman et al., 2004). It is
estimated that the methanogen population accounts for ,3%
to 5% of rumen microbial biomass. So far 113 species of
methanogen have been described, and although there are
many more in other ecosystems, only a few have been
described in the rumen (Janssen and Kirs, 2008).

Methanogens appearing first in the rumen are of the genus
Methanobrevibacter (Skillman et al., 2004). In the case of
Methanobacterium, representatives of the family colonize the
rumen environment rapidly, but, in contrast to Methano-
brevibacter, they disappear rapidly, that is, on the 12 to 19th
day after birth (Zhu et al., 2007). According to some literature
data, predominant methanogens in the rumen ecosystem of
farm animals include microorganisms of the genus Methano-
brevibacter and Methanosaricina, and especially the following
species: Methanobacterium formicicum, Methanobrevibacter
ruminantium, Methanosaricina barkeri, Methanosaricina mazei- E-mail: adamck@jay.up.poznan.pl
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and Methanomicrobium mobile (Stewart et al., 1997; St-Pierre
and Wright, 2012). Other data demonstrated predominance
of only M. ruminantium (Leahy et al., 2010), whereas other
data indicated the order Methanobacteriales as predominant in
the rumen (Jarvis et al., 2000). However, the literature is still
expanding and newer methanogens are being identified
(Wright et al., 2008; Zhou et al., 2009; King et al., 2011; Lee
et al., 2013).

There are also differences in the methanogen popu-
lations associated with rumen solid- and liquid phases.
M. mobile, Methanobacterium aarhusense and Methano-
sphaera stadtmanii are species occurring only as free-living
forms in rumen fluid, which account for a small percentage
of the general Archaea population (Zhu et al., 2007).
Archaea associated with solid phases may be a much
larger part of the total population of rumen methanogens
(Tajima et al., 2001). Zhu et al. (2007) named Methano-
brevibacter spp., Methanosphaera spp. and unidentified
methanogens as species characteristic for the solid fraction.
However, Shin et al. (2004) showed that the most numerous
group of Archaea inhabiting solid particles are the families
Methanomicrobiaceae and Methanobacteriaceae. In the
group of microorganisms related to the rumen wall, pre-
dominant methanogens include Methanobrevibacter spp.
and Methanosphaera spp. (Zhu et al., 2007). A considerable
part of the population of methanogens in the rumen are of
unknown taxonomy and properties.

Previous research demonstrated that quantitative as
well as qualitative variability of microorganisms (including
methanogens) in the rumen depends on many factors, such
as: animal species, geographical location, feed and also on
the use of feed additives that affect rumen fermentation
(Szumacher-Strabel et al., 2009; Hook et al., 2010; Huang
et al., 2012; Popova et al., 2012; Kumar et al., 2013).

Analysis of the process of methanogenesis in the rumen
requires understanding of interactions between hydrogen
producers (bacteria, protozoa, fungi) and consumers (metha-
nogens) in the rumen ecosystem in terms of the possibility
of reducing the negative effects (both environmental and
economic) of methane production in the rumen. Therefore,
growth and development of Achaea directly depends on the
population of microorganisms, for example, those utilizing
cellulose, which leads to an increase in the concentration of
hydrogen (substrate for the process of methanogenesis), a
by-product of crude fiber hydrolysis (Morvan et al., 1996;
Wang et al., 2011). Syntropic interaction was demonstrated
between rumen bacteria and methanogens by Wolin et al.
(1997). Bacteria provide a substrate for methanogenesis in the
form of hydrogen and formic acid, whereas methanogens
decrease the concentration of bacterial metabolism products
(i.e. in the process of horizontal hydrogen transfer). High
amounts of bacterial metabolism products may be harmful to
other microorganisms inhabiting the rumen environment.
Maintaining low (1026 to 1027 mole/dm3) concentration of
hydrogen favorably influences the development of particular
groups of microorganisms that are important for a range
of rumen processes (Wolin and Miller, 1988; Ushida and

Jouany, 1996). Additionally, the hydrogen concentration in the
rumen affects effectiveness of the process of methanogenesis.
Acidification to pH 5.5 causes loss of the ability to bind H1 by
Archaea, leading to further acidification of the rumen and a
reduction in the methanogen population (Russell et al., 1988;
Van Kessel and Russell, 1996).

Rumen archaea use large amounts of hydrogen for
methane production (Hungate, 1967). The simplest reaction
eliminating hydrogen from the rumen of ruminants is a
combination of H2 and CO2 according to the following
equation: CO2 1 4H2 5 CH4 1 2H2O (Whitmann et al.,
1992; Morgavi et al., 2010). The theory of hydrogen utiliza-
tion was confirmed in the study of Demeyer and De Graeve
(1991), where hydrogen addition to rumen fluid caused an
increase in methane production by 94% with little change
in the production of volatile fatty acids (VFA). Methane
may also come from other rumen reactions, including the
reduction of formic acid, methanol, methylamine, diethyl-
amine, triethylamine (Hungate et al., 1970). It is likely that
the scale of methane production in the above processes is
modest (Wolin et al., 1997).

The process of methanogenesis, and thereby the number of
methanogens in the rumen has been directly correlated with
the protozoal population (Newbold et al., 1995). Some in vitro
and in vivo studies demonstrated that the lack of the protozoal
population in the rumen ecosystem has a significant effect
on both the population of methanogens and the level of
methane production (Cieslak et al., 2009a; Morgavi et al.,
2012). The research also showed that sheep maintained
without protozoa for more than 2 years have reduced metha-
nogenesis in comparison with sheep kept without protozoa for
only 2 months (Morgavi et al., 2012). Similarly, earlier studies
also demonstrated that short-term (up to 3 months) defauna-
tion of the sheep rumen causes reduction of methane emission
in comparison with the rumen of sheep inhabited by all groups
of microorganisms and after long-term defaunation for ca.
1 year (Ranilla et al., 2004). The results from other study
emphasize the need to consider the different methanogen
communities (free-living v. protozoa-associated methanogen)
when developing strategies for mitigating methane emissions
in ruminants (Tymensen et al., 2012). Further, it is important to
recognize that different archaeal phylotypes are associated
with specific groups of protozoa (Ohene-Adjei et al., 2007).
A number of experiments have shown that the methanogens
living in close symbiosis with rumen protozoa include:
M. formicicum, M. ruminantium, M. barkeri, M. mazei and
M. mobile (Stewart et al., 1997). Regensbogenova et al.
(2004) demonstrated that M. mobile occurs mainly in single-
species cultures of Metadinium medium, Entodinium furca
monolobum and Diplodinium dentatum, while Kamra
(2005) named four species of rumen ciliates of the group
Entodiniomorpha, which are in close symbiosis with the
methanogens: Entodinium elonginucleatum, Entodinium
bursa, Eudiplodinium maggii and Eremoplastron bovis.
Other researchers (Finlay et al., 1994; Kisidayova et al.,
2000; Cieslak et al., 2006) added to the list Dasytricha
ruminantium, Entodinium caudatum, E. f. monolobum,
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D. dentatum, Eremoplastron dilobum, Epidinium ecaudatum
and Ophryoscolex caudatus. It is presumed that the species
preferences of the methanogens result from differences in
the protozoal cell surface (Vogels et al., 1980). However,
literature data are ambiguous mainly because of the diffi-
culty of culturing methanogens in vitro.

This review focuses on the effects of plant components
on rumen methanogens and an important first step in
understanding responses, and variation in responses, is to
consider the structure, biochemistry and chemical analysis of
these compounds.

Standardization of plant material and extract for
biological activity studies

Saponin sources
One of the most commonly researched plant materials
for anti-methanogenic activity is Yucca schidigera. It was
approved by Food and Drug Administration as a food and
feed additive with the ‘GRAS’ label (Generally Recognized
as Safe). Two different product of yucca are available on
market, that is, yucca powder (YP) and yucca extract (YE).
Y. schidigera contains as much as 10% of steroidal saponins on
a dry matter (DM) basis, which makes this plant one of
the richest commercial source of saponins. YP, which is just
powdered yucca log also contains 10% saponins. YE is pre-
pared by squeezing the juice present in yucca logs, followed by
the condensation to produce a syrup, and may contain 15% to
19% of steroidal saponins. Acid-hydrolyzed fractions of these
saponins contain both furostanol and spirostanol aglycones.
These include sarsapogenin, markogenin, smilagenin, samo-
genin, gitogenin and neogitogenin (Kaneda et al., 1987). In the
plant, these can be found in a multi-component mixture of
glycosides (Tanaka et al., 2000; Oleszek et al., 2001, Kowalczyk
et al., 2011). They can be found both as monodesmosides
with one sugar chain attached at the 3-O- and bidesmosides
with two sugar chains at the 3-O- and 26-O- positions. Tanaka
et al. (2000) identified as many as 13 structurally different
monodesmosidic saponins, giving them trivial names from YS-I
to YS-XIII.

In the work of Oleszek et al. (2001) eight individual
saponins were isolated and identified out of which five were
known spirostanol and three new furostanol structures.
However, monodesmosides made up about 93% of the total
saponins present. Recent LC-MS analysis showed that there
are substantial qualitative and quantitative differences in the
concentration of monodesmoside and bidesmoside saponin
components between YP and YE; YE contains predominantly
monodesmosides, whereas YP has higher amount of bi-
desmosidic forms. The bidesmosides in YP result from the
presence of yucca bark (Kowalczyk et al., 2011).

The effects of Y. schidigera have been historically attri-
buted to its saponin content. However, experiments performed
with rats showed effects of both saponin-containing and
non-saponin-containing fractions (Duffy et al., 2001). Several
mechanisms have been proposed for the mode of action of
Y. schidigera extract, but none has been conclusively proven.

The above discussion shows the difficulty of standardizing
batches of yucca product, and also the potential for large
variation between batches. Typical quality control procedures
for the yucca products involve acid hydrolysis of the butanol
phase followed by GC-FID analysis of resulting sapogenins. No
information is given on glycosidic composition. In fact, glyco-
sidic composition rather than aglycone content determines the
biological activity of these compounds.

Additional difficulties in interpretation of experimental
data when YE is used relate to the composition of the rest of
the product. Even if concentration of steroidal saponins is
20% of the sample, the other 80% still remains unknown.
A high proportion of YE is made up of polysaccharides of
unknown composition and their effects on extract activity is
not known.

Similar problems arise with other saponin sources, for
example, quillaya saponins, the second largest commercial
source of triterpene saponins. The term quillaya saponins
covers the multicomponent mixture of individual glycosides
of high polarity and complex structural diversity. Most of the
published work on this plant refers to one of the best known
component (QS-21) of acylated bidesmosidic triterpene
saponin. No analytical protocols are available to standardize
these saponins and not much is known about their stabil-
ity under different extraction/purification conditions. Usually
acylation is very sensitive to temperature, pH or other
extraction/purification treatments. Thus, the development of
analytical protocols for standardization of quillaya saponins
is essential.

Tannins and proanthocyanidins
Tannins are a complex mixtures of individual compounds
having molecular weights ranging from 500 to over 3000
(gallic acid esters) and up to 20 000 (proanthocyanidins).
Their standardization before in vitro or in vivo trials
represents a unique analytical problem. They are usually
standardized using a spectrophotometric technique with
Folin–Ciocalteu reagent, with results expressed as gallic acid
equivalents. In fact this method is not specific, measuring
total reducing capacity. There is a need for more specific
analytical approaches, such as HPLC for procyanidins and
GCMS for proanthocyanidins.

Essential oils
Widely occurring in plants and animals, the essential oils may
consist of volatile constituents of terpenoid or non-terpenoid
origin. Under this group, hundreds of large or small molecules
can be present, consisting of hydrocarbons and their oxy-
genated derivatives. Some of these compounds may addi-
tionally contain nitrogen or sulfur. They may exist in the form of
alcohols, acids, esters, epoxides, aldehydes, ketones, amines
and sulfides but in some cases halogenated compounds
are also found. The composition of essential oils is usually
characteristic for the particular plant species and responsible
for its fragrance. Each of the compounds may have different
effects on organisms causing damage to the plant tissue (e.g.
herbivorous insects or microorganisms).

Plant components and rumen methanogens
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As with other groups of secondary metabolites, the level
and composition of essential oils change depending on the
variety, environmental factors, time of harvest, etc. A further
source of variation in commercially available essential oils is
differences in the technology used for their isolation, as well
as storage. The most effective analytical method for essential
oils remains GS-MS. More advanced techniques, such as
GC/FT-IR and NMR, are required for identification of new
components of essential oils.

Effect of plant components on rumen methanogens

Plant components (e.g. saponins, tannins, essentials oils)
may affect methanogenesis by inhibiting growth, develop-
ment and activity of the population of methanogens both
indirectly (by reducing the number of protozoa associated
with methanogens) and directly, by affecting methanogens.
Moreover, plant components may also case a shift toward
propionate production, which affects methanogenesis through
reduced competition for hydrogen.

Saponins

Although saponins have reduced the amount of enteric
methane production by up to 50% in some studies (Szumacher-
Strabel and Cieslak, 2010; Patra and Saxena, 2010; Bodas
et al., 2012), these effects need to be confirmed in more
in vivo studies. There is some ambiguity in the literature
concerning the mechanism of saponins action to reduce
methanogens and methanogenesis. According to Guo et al.
(2008), mitigation of methanogenesis using tea saponins
results from decreased activity of the mcrA gene (an indi-
cator of the methanogenic activity of the methanogen
population), without changing the total methanogen num-
bers. This effect was noted when using a mixed rumen
culture for in vitro studies, but not when pure cultures of
M. ruminantium were tested. Other researchers used 3 g/day
of tea saponins in sheep diets and concluded that there was
no effect on the populations of methanogens (Mao et al.,
2010; Zhou et al., 2011). Earlier in vitro research had
suggested mitigation of the process of methanogenesis
without reduction in the number of methanogens with the
use of saponins from Sapindus saponaria or tea saponins
(Hess et al., 2003; Hu et al., 2005). It seems likely that
the reduction in methanogenesis was related to a reduction
in Archaea associated with protozoa as a result of partial
defaunation. A reduction in the protozoal population
decreases the amount of hydrogen available in the rumen for
the process of methanogenesis (Szumacher-Strabel and
Cieslak, 2010).

Saponins, due to their structure (hydrophobic sapogenin, i.e.
aglycone, and a hydrophilic sugar part – glycone, which may
comprise glucose, arabinose, xylose, galactose) can interact
with cholesterol present in eukaryotic cell membranes and
thereby cause destruction of this cell type (Cheeke, 1996; Wina
et al., 2005). This may explain also a lack of direct saponin
effect on methanogen cells. Wina et al. (2005) found that lower

doses (1 mg/ml) of methanol extract of Sapindus rarak
containing saponins, used in in vitro research, did not reduce
the concentration of methanogen RNA. The reduction was
observed only for higher concentrations (4 mg/ml). Similar
conclusions were drawn by other authors (Staerfl et al., 2010;
Wang et al., 2011; Zmora et al., 2012b and 2012c). Moreover,
Bodas et al. (2012) demonstrated that low saponin concentra-
tions indirectly influence methane production in the rumen by
reducing the number of protozoa, whereas higher saponin
concentrations have direct negative effect on methanogens.

As the rumen is a highly dynamic ecosystem, examination
of the influence of phytofactors on microorganisms involved
in the process of methanogenesis should take into account
factors that can deactivate biological properties of saponins,
including degradation, hydrolysis, deglycosylation, detox-
ication of saponins (Miles et al., 1992; Makkar and Becker
1997; Odenyo et al., 1997; Wang et al., 1998; Teferedegne
et al., 1999). According to other authors, the duration of
saponin administration and the ratio of forage to concentrate
may have a significant influence on their effect (Newbold
et al., 1997, Teferedegne et al., 1999; Goel et al., 2008).

Tannins
Research on the effects of tannins on the populations of
methanogens has been carried out both under in vitro and
in vivo conditions, however, results were not always unequivocal
(Tavendale et al., 2005; Bhatta et al., 2009; Szumacher-Strabel
et al., 2011; Cieslak et al., 2012). The range of mitigation of
methane production by using tannins is quite broad, from 2% to
58% in comparison with analyzed control groups (Patra and
Saxena, 2010a; Bodas et al., 2012), and factors responsible for
the mitigation are various, for example, tannin type, plant
source. Tavendale et al. (2005) suggested that inhibition of
methanogen growth is due to the bacteriostatic and bacteri-
cidal effects of condensed tannins (CT). The study demonstrated
deactivation of methanogens (M. ruminantium), linked to
reduction of produced methane (Tavendale et al., 2005). Similar
conclusions were drawn by Pellikaan et al. (2011).

Other researchers analyzed six commercial sources of
tannins containing hydrolysable tannins (HT) or HT and CT, and
showed greater potential for mitigation of methanogenesis
after using a mixture of HT and CT (Bhatta et al., 2009). The
mixture of HT and CT suppresses methanogenesis by reducing
the methanogenic populations in the rumen either directly or by
reducing the protozoal population, thereby reducing methano-
gens symbiotically associated with the protozoal population
(Bhatta et al., 2009). However, Goel and Makkar (2012)
showed that HT led to a larger reduction in the population of
methanogens or microorganisms providing them with H2 than
CT. Other authors noted not only a direct tannin effect on
methanogens but also a direct influence on protozoa associated
with them (Patra and Saxena, 2009). Research with dairy cattle
showed that addition of CTs from Vaccinium vitis idaea at
2 g/kg dietary DM caused mitigation of methanogenesis mainly
resulting from a reduction in protozoal numbers without a
negative effect on the digestibility of organic matter and VFA
production (Cieslak et al., 2012).
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CT extracted from Leucaena leucocephala caused a linear
reduction in total methanogens (up to 99%) and total protozoa
(up to 83%) with increasing levels (from 20 to 60 mg/g DM of
substrate) of CT in an in vitro study (Tan et al., 2011). However,
the reduction in protozoal population was not always propor-
tionally related to the decrease in methanogen population.
Another study also confirmed that tannin effects on the proto-
zoal population are varied, probably because some tannins
have a direct effect on methanogens, which are not associated
with protozoa (Bhatta et al., 2012). Other researchers have
demonstrated a decline in the methanogen population asso-
ciated with protozoa, for example, species belonging to
Methanobacteriaceae, and simultaneous increase in the number
of free-living Methanobacteriales, after inhibition of protozoa
(Goel and Makkar, 2012). A reduction in the number of proto-
zoa is not always accompanied by a reduction in the number of
methanogens. Limitation of the population of one methanogen
may cause an increase in the populations of the others. As
phytofactors may increase populations of some microorganisms
by decreasing others, the analysis of rumen microorganisms
should include also the quantitative and qualitative analysis of
other organisms in the rumen (Zmora et al., 2012a).

Interpretation of results with extracts containing one
bioactive phytofactor, even in a predominant concentration, is
difficult because of the complexity of structures, as well as the
possibility of interactions between individual bioactive extract
components or bioactive extract components and feed com-
ponents. Soltan et al. (2012) also suggested that the potential
methanogenic properties of feed containing tannins may be
related not only to the tannin content, but also to other factors.
Another cause of lack of the effect of feed additives containing
tannins on the number of methanogens in rumen fluid under
in vitro conditions may be the use of too low concentrations of
tannins in the supplement (Szumacher-Strabel et al., 2011).
Jayanegara et al. (2012) stressed that methane declined
when dietary tannins increased, however, when the amount of
tannin (in the batch culture system) is too high (more than
100 g tannin/kg DM) the accuracy of estimates of the impact of
tannins on methanogenesis decreased.

Evaluation of the effects of tannins on rumen methano-
genesis should also include other responses whose mod-
ulation may indirectly cause mitigation. For example, the use
of extracts or feed containing considerable amount of tan-
nins may limit feed intake or reduces digestibility of organic
matter, and therefore decreases the amount of methane
produced (e.g. Carulla et al., 2005).

There is scarce information about the direct effect of
tannins on methanogens. Smith et al. (2005) demonstrated a
number of mechanisms improving tolerance of bacteria to
the unfavorable environment produced by tannins. These
include modification of the cell membrane, secretion of a
protective exo-polysaccharide layer around the cells, and
degradation/modification of tannins.

Essential oils
Essential oils are mixtures of terpenoids, low-molecular-
weight aliphatic hydrocarbons, acids, alcohols, aldehydes,

acyclic esters, and/or lactones (Dorman and Deans, 2000),
and are usually extracted from plant material by water or
aqueous alcohol steam distillation. Antimicrobial effects
of essential oils are manifested in their high affinity for
microbial cell membranes (Jouany and Morgavi, 2007).
However, the effect of individual essential oils depends on
their structure, which results from chemical composition and
type of functional group, for example, terpenoids or phenols.
They cause disturbances of ion transport (electrons) through
the cell membrane, mitigate protein translocation, phos-
phorylation and enzyme-dependent reactions taking place
in the membrane (Jouany and Morgavi, 2007). Essential
oils affect individual groups of microorganisms differently
because of differences in the structure of the cell membrane,
for example, between bacteria and methanogens.

In some studies, essential oils stimulated some protozoa
species, for example, Isotricha spp. or Dasytricha spp. and this
led to an increase in associated Methanobrevibacter smithii.
However, in many studies authors showed decreased rumen
methane production in response to essential oil supplements,
without alterating protozoa population (Evans and Martin,
2000; Busquet et al., 2005). The direct influence of essential
oils on methanogen cells may be related to the structure
and properties of the oil used or secondary plant metabolites
contained therein. In an experiment carried out by Busquet
et al. (2005), garlic oil (Allium sativum) was used as the sup-
plement. In contrast to the essential oils that are active only
against Gram-positive bacteria, garlic oil is active against
Gram-negative and Gram-positive bacteria, fungi, viruses and
parasites, and the main mechanism of action is related to the
ability to react with –SH groups (O’Ghara et al., 2000). Similar
results of a decrease in total methanogens were obtained by
Kongmun et al. (2011) after using the addition of 7% coconut
oil with 100 g/day of garlic powder in rumen fistulated swamp
buffalo bulls. In their study, there was no relationship between
the protozoal population and the methanogen population,
probably because methanogens are found in a wide range
of environments in the rumen: (i) free in the rumen fluid;
(ii) attached to particulate material and rumen protozoa and
(iii) attached to the rumen epithelium (Janssen and Kirs, 2008).
According to Goel et al. (2009), decreases in methanogen
populations can be correlated with decreased bacteria popu-
lations, for example Ruminococci that produce significant
amounts of hydrogen. However, these effects may depend on
the concentration of the specific treatment factor used and,
according to McIntosh et al. (2003), ruminal methanogens
seem to be affected only at high concentrations of essential
oils. In their experiment, EO blend (containing thymol, eugenol,
vanillin and limonene) of the concentration up to 160 ppm did
not alter the M. smithii population, which was inhibited only at
a concentration of 1000 ppm.

Essential oils can modulate either the rumen methanogen
population or methanogen activity and they do not always
influence the total number of methanogens inhabiting the
rumen, instead affecting the distribution among methanogen
species. This thesis is confirmed by the results of Ohene-
Adjei et al. (2008), where an increase in the diversity
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Table 1 Effects of saponin sources on methane production, methanogen and protozoa populations in the rumen

Reference Saponin sources Diet/substrate Test system/dosage Methane Methanogen Protozoa

Narvaez et al. (2013) Yucca schidigera extract (153 mg smilagenin

equivalent per g DM of steroidal sapogenins)

Total mixed ration (forage/concentrate

total mixed ration barley

silage–barley grain) 65 : 35

Serum bottle/650 mg per ml 215% 252% NA

Li and Powers (2012) Yucca saponin (8.5% saponin) (YS) Total mixed ration (C)

(concentrate/forage) 54 : 46

Holstein steers/

Exp1/

C 1 0.64% YS

C 1 1.5% QS

215%

NA NA

29%

Quillaja saponin (3.6% saponin) (QS)

Exp2/

C 1 0.25 TS NE

Tea saponin (21.6% saponin) (TS)

Exp3/

C 1 1.5 QS

C 1 0.5 TS

C 1 1.5% YS

15%

218%

NE

Zhou et al. (2011) Tea saponin (60% triterpenoid saponins) Chinese wild rye/concentrate 60 : 40 Refaunated or defaunated sheep/

3 g per day

211% refaunated,

218% defaunated

NE refaunated,

NE defaunated

243% refaunated,

2100% defaunated

Wang et al. (2011) Gynosaponins powder (98% gynosaponins) Rice straw 100 Batch culture/100 and 200 mg/l 273%, 289% 242%, 273% NA

Mao et al. (2010) Tea saponins (60% saponins) Wild rye/concentrate 60 : 40 Growing lambs/3 g per day 227% NE 241%

Holtshausen et al. (2009) Yucca schidigera (6% saponin) Barley silage/concentrate 51 : 49 Batch culture/15, 30 and 45 mg/g substrate 28%, 215%, 226% NA NA

Quillaja saponaria (6% saponin) Barley silage/concentrate 51 : 49 Dairy cows/10 g per kg of DM NE, 211%, 212%

Yucca schidigera (6% saponin) NE

Quillaja saponaria (6% saponin) NE

Wang et al. (2009) Yucca schidigera extract (Desert King International

Product, United States of America)

Hay/concentrate 75 : 35 Sheep/170 mg per day 215% NA NA

Guo et al. (2008) Tea saponin (60% triterpenoid saponin) Grass meal/corn meal 50 : 50 Serum bottle/0.4 mg per ml 28% NE 250%

Pen et al. (2008) Quillaja saponaria extract (QSE) (5% to

7% saponins)

Oat hay/concentrate 50 : 50 Continuous culture fermentation vessels/

2 and 4 ml(QSE)/l
NE NA 262%, 275%

Yucca schidigera extract (YSE) (8% to

10% saponins)

Continuous culture fermentation vessels/

QSE : YSE, 2 : 0 ml/l, 2 : 2 ml/l, and 2 : 4 ml/l

214%, 216%, NE 250%, 275%,

275%

Goel et al. (2008) Sesbania sesban leaves extract

(63.5% saponins)

Hay/concentrate 50 : 50 HGT/10.9 and 21.2 mg NE 278% 214%, 236%

Knautia arvensis leaves extract

(82.4% saponins)

HGT/3.88 and 7.76 mg 221% 214%, 225%

Trigonella foenum-graecum seeds extract (34.5%

saponins)

HGT/5.62 and 11.54 mg 222% 215%, 239%

Pen et al. (2007) Yucca schidigera extract Italian ryegrass hay/concentrate 60 : 40 Sheep/1.31 to 1.64 g saponin/day NE NA NE

Quillaja saponaria Sheep/0.8 to 1.3 g saponin/day

Pen et al. (2006) Yucca schidigera Extract (80–100 g/kg saponins) Oat hay/concentrate 50 : 50 Serum bottle/2, 4 and 6 ml/l 217%, 229%, 242% NA 229%, 255%, 256%

Quillaja saponaria (50–70 g/kg saponins) NE 234%, 241%, 240%

Hu et al. (2005) Tea saponins (60% saponins) Grass meal/corn meal 50 : 50 HGT/0.2 and 0.4 mg/ml 213%, 216% NA 213%, 216%

DM 5 dry matter; HGT 5 hohenheim gas test system; NE 5 no effect; NA 5 not analyzed; –decrease; 1increase.
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Table 2 Effects of tannin sources on methane production, methanogen and protozoa populations in the rumen

Reference Tannin sources Diet/substrate Test system/dosage Methane Methanogen Protozoa

Hassanat and Benchaar

(2013)

Acacia mearnsii extract (82% CT) Total mixed ration (forage/concentrate)

65 : 35

Serum bottle/4, 10, 20, 30 and

40 mg

NE, 212%, 221%, 232%,

238%

NA NA

Schinopsis balansae extract (90.4% CT) NE, NE, 223%, 234%, 240%

Castanea sativa extract (5.7% CT and 75.5% HT) NE, 213%, 223%, 231%, 240%

Quercus aegilops extract 8.0% CT and 71.2% HT) NE, 211%, 219%, 226%, 236%

Soltan et al. (2012) Acasia saligna leaves (6.3% CT) Acasia saligna 100 Serum bottle/500 mg 238% NA 29%

Laucaena leucocephala leaves (4.6% CT) Laucaena leucocephala 100 236% 223%

Prosopis juliflora leaves (0.04% CT) Prosopis juliflora 100 NE 34%

Atriplex halimus leaves (0.02% CT) Atriplex halimus 100 NE 10%

Niderkorn et al. (2011) Onobrychis viciifolia sainfoin (1.52% CT) Onobrychis viciifolia/600 mg Serum bottle/600 mg/3.5 h NE NA NA

Cocksfoot/sainfoin 50 : 50 Cocksfoot plus sainfoin/600 mg NE

Ryegrass/sainfoin 50 : 50 Ryegrass plus sainfoin/600 mg NE

Onobrychis viciifolia sainfoin (1.52% CT) Onobrychis viciifolia/600 mg Serum bottle/600 mg/24 h NE

Cocksfoot/sainfoin 50 : 50 Cocksfoot plus sainfoin/600 mg 18%

Ryegrass/sainfoin 50 : 50 Ryegrass plus sainfoin/600 mg NE

Tan et al. (2011) Leucaena leucocephala extracts (100% CT) Guinea grass 100 HGT/10, 15, 20, 25 and 30 mg 233%, 247%, 257%, 259%,

263%

225%, NE, 299%, 294%,

295%

286%, 283%, 262%,

255%, 255%

Hariadi and Santoso (2010) Acacia mangium (5.4% tannins) Elephant grass/ Accacia mangium 80:20 Glass syringes/60 mg 229% NA NE

Biophytum petersianum (4.3% tannins) Elephant grass/Biophytum petersianum
80 : 20

225% NE

Psidium guajava (3.5% tannins) Elephant grass/Psidium guajava 80 : 20 218% NE

Phaleria papuana (3.1% tannins) Elephant grass/Phaleria papuana 80:20 NE 231%

Persea americana (2.4% tannins) Elephant grass/Persea americana 80 : 20 NE NE

Sesbania grandiflora (1.9% tannins) Elephant grass/Sesbania grandiflora 80 : 20 NE 255%

Grainger et al. (2009) Acacia mearnsii extracts (603 g CT/kg DM) Grazing ryegrass/cracked triticale grain

89 : 11

Dairy cows/0.9 or 1.8% DMI 214%, 229% NA NA

Bhatta et al. (2009) Mimosa tannins (7.78% HT plus 1.5% CT) Timothy hay/concentrate 65 : 35 HGT/5, 10, 15, 20 and 25% tannin-

containing samples of the basal

diet DMI

211%, 214%, 227%, 232%,

241%

NE NE, 227%, 126%,

215%, 29%
Quebracho tannin (7.62% HT plus 3.67% CT) NE, 231%, 237%, 245%,

245%

220%, 227%, 227%, 227%,

235%

24%, 216%, 232%,

228%, 255%

Quebracho tannin (3.94% HT plus 1.33% CT) 213%, 223%, 226%, 231%,

238%

NE, 234%, 226%, 222%,

230%

28%, 220%, 234%,

233%, 234%

Ramirez-Restrepo et al.
(2010)

Salix spp. (34% CT) Ryegrass/white clover Sheep (5th or 11th weeks)/grazed

willow (Salix spp.) fodder

blocks 12 g CT/kg DMI

219% (5th week)

NE (11th week)

NA NA

Animut et al. (2008a) Lespedeza striata forage (151 g CT/kg DM) Lespedeza striata/ Sorghum bicolor
(33 : 67, 67 : 33, 100)

Goats/200, 447 and 613 g/day 233%, 247%, 258% NA 242%, 256%, 269%

Animut et al. (2008b) Lespedeza striata forage (140 g CT/kg DM) Lespedeza striata/Lespedeza cuneata
100 : 0, 50 : 50, 0 : 100

Goats/720, 719 and 745 g/day 249%, 254%, 251% NA 234%, 222%, 251%

Lespedeza cuneata forage (151 g CT/kg DM)

Beauchemin et al. (2007) Quebracho tannins (91% CT) Barley silage/concentrate 70 : 30 Beef cattle/1 or 2% of DMI NE NA NA

Zeleke et al. (2006) Acacia angustissima 459 Brachiaria humidicola grass/Acacia
angustissima 20 : 80

Rusitec/2.8 g DM/day 212% NA NA

Sesbania sesban 10865 Brachiaria humidicola grass/Sesbania sesban
20 : 80

237%

CT 5 condensed tannins; HT 5 hydrolysable tannins; DM 5 dry matter; DMI 5 dry matter intake; HGT 5 hohenheim gas test system; NE 5 no effect; NA 5 not analyzed; –decrease; 1increase.
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Table 3 Effects of essential oil sources on methane production, methanogen and protozoa populations in the rumen

Reference Essential oil source Diet/substrate Test system/dosage Methane Methanogens Protozoa

Lin et al. (2012a) Combination of essential oil (809 g/kg eugenol in

thyme oil; 837 g/kg carvacrol in oregano oil;

855 g/kg cinnamaldehyde in cinnamon oil;

801 g/kg limonene in lemon oil) plus

monosodium fumarate

Ground maize/ground Leymus
chinensis hay 50 : 50

Serum bottles/500 mg/l of essential oil plus 0,

5, 10 and 15 mM monosodium fumarate

251%, 263%, 280%, 256% 238%, 248%, 241%,

248%

295%, 295%, 294%,

294%

Lin et al. (2012b) Combination of essential oil (eugenol, carvacrol,

citral, cinnamaldehyde; purity .99%) plus

monosodium fumarate

Ground corn kernels/ ground Leymus
chinensis hay 50 : 50

IVGPS (24 h)/200 mg/l essential oil plus 0, 5,

10 and 15 mM of monosodium fumarate

231%, 276%, 284%, 265% 223%, 216%, 234%,

216%

288%, 285%, 288%,

282%

Manh et al. (2012) Eucalyptus leaf meal powder Concentrate 0.5% of BW/rice straw

ad libitum

Dairy cows/100 and 200 g/day) 216%, 226% NA NE, 222%

Chaves et al. (2012) Cinnamon leaf (eugenol; 0.76 v/v) Barley silage Serum vials (6, 12 and 24 h)/37.5, 75 and

120 mg/kg silage DM

6 h: 247%, 229%, NE; 12 h: NE;

24 h: NE

NA NA

Oregano (carvacrol, thymol; .0.6 v/v) 6 h: NE, 224%, 224%; 12 h:

NE24 h: NE

Sweet orange (limonene; .0.95 v/v) 6 h: NE; 12 h: NE; 24 h: NE

Patra and Yu (2012) Clove oil Ground alfalfa hay/concentrate 50 : 50 Serum bottles/0.25, 0.50 and 1.0 g/l 211%, 217%, 234% 26%, 23%, 212% 12%, 26%, 227%

Eucalyptus oil Fermentation medium 226%, 28%, 217% 21%, 20.4%, 26% 11%, 22%, 27%

Garlic oil 222%, 228%, 242% 28%, 214%, 216% 20.2%, 13%, 27%

Origanum oil 212%, 238%, 286% 215%, 220%, 238% 211%, 232%, 235%

Peppermint oil 28%, 220%, 225% 215%, 220%, 220% 21%, 211%, 233%

Sallam et al. (2011) Achillea santolina (16-dimethyl

15-cyclooactdaiene; 60.5%)

Concentrate/forage 50 : 50 IVGPS (24h)/25, 50 and 75 ml/75 ml

rumen fluid

137%, 156%, 230% NA 29%, 25%, 245%

Artemisia judaica (piperitone and camphor; 49.1%

and 34.5%)

146%, 143%, 24% NE

Mentha microphylla (piperitone oxide and

cis-piperitone oxide; 46.7% and 28%)

292%, 2100%, 2100% 212%, 221%, 249%

Schinus terebinthifolius (g-muurolene and

a-thujene; 45.3% and 16.0%)

NE NE, 221%, 241%

Araujo et al. (2011) Carvacrol (2-methyl-5-isopropyl-1-phenol) Concentrate/forage 80 : 20 Serum bottles/50 mg/l 295%, 267%, 213% NA NA

Eugenol (2-methoxy-4-(2-propenyl)-phenol)

1,8-cineol (1,3,3-trimethyl-2-

oxabicyclo[2.2.2]octane)

Patra et al. (2010) Foeniculum vulgare seed extracts (ethanol and

methanol)

Wheat straw/concentrate 50 : 50 HGT (24 h)/ethanol and methanol extracts of

0.5 ml/30 ml

239%, 271% NA 241%, 224%

Syzygium aromaticum flower bud extracts

(ethanol and methanol)

247%, 286% 243%, 248%

Sallam and Abdelgaleil

(2010)

Citrus essential oil (DL-limonene and g-terpinene;

83.9% and 10.75%)

Roughage/concentrate 50 : 50 SAGPT (24 h)/25, 50 and 75 ml/75 ml rumen

fluid

NE, 216%, 233% NA NE, 235%, 235%

Limonene (100%) 114%, 220%, 210% NA 247%, 248%, 240%

Wang et al. (2009) Oregano extract Ropadiar Hay/concentrate 75 : 25 Sheep/250 mg per day 212% NA NA

Sallam et al. (2009) Eucalyptus oil eucalyptol (1,8-cineole) Roughage/concentrate 50 : 50 IVGPS (24 h)/25, 50, 100 and 150 ml/75 ml 226.5%, 247%, 277%, 285% NA 223%, 236%, 259%, 264%

Agarwal et al. (2009) Peppermint oils–Mentha piperita Wheat straw/concentrate mixture

50 : 50

HGT (24 h)/0.33, 1.0 and 2.0 ml/ml NA 1105%, 282%, 280% 230%, 278%, 288%

Soliva et al. (2008) Pine oil–Pinus mugos (monoterpene hydrocarbons

a-pinen, b-pinen, limonellen, v3-caren,

b-phellandren with proportions of 22%, 13%,

12%, 25% and 14%)

Mixed forage/concentrate 50 : 50 Rusitec(10 days)/0.008 g DM/day NE NA 28%
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of methanogenic Archaea (Methanosphaera stadtmanae,
M. smithii and some uncultured groups) was observed in
response to treatment with cinnamaldehyde, garlic and
juniper berry oil, without alteration of the total rumen
methanogenic capacity.

Therefore, inhibition of the process of methane production
in the rumen is not always accompanied by changes in the
diversity of methanogens or a decrease in their population.
Twofold increase in the number of rumen methanogens
resulting from using the addition of 0.33 ml peppermint oil
per ml of incubation medium in vitro was followed by 20%
decrease in methane production, while using higher con-
centrations of peppermint oil (1 or 2 ml/ml) decreased
methanogen populations (on average by 82%) and metha-
nogenesis by 61% (Agarwal et al., 2009). A similar effect
was observed in an in vitro experiment where limonene, the
main component of fir oil (Abies alba), at 40 or 400 mg/l
(Cieslak et al., 2009b) was used. The addition of limonene
in greater amounts caused reduction of the population
of methanogens (on average by 25%) with simultaneous
mitigation of the process of methanogenesis (on average
by 28%; Cieslak et al., 2009b). The lower level had no
effect on methanogen numbers or methane production.
This confirmed earlier observations that medium and high
concentrations of essential oils can affect the number of
methanogens (Cieslak et al., 2009b). The authors also do not
exclude that the addition of limonene, indirectly reducing
the number of microorganisms providing the substrate for
methanogens in the form of H2 and CO2, can reduce the
amount of methane produced in the rumen.

The possible mechanism of action of essential oils on
methane production in the rumen may be the result of direct
inhibition of methanogens (Calsamiglia et al., 2007). Essential
oils may affect the unique methanogen cell membrane struc-
ture (isoprenoid unit) that leads to cell destruction. Studies
with essential oils have not considered the possibility that
methanogen species may change in response to treatments as
an adaptive response. This would complicate targeted efforts
to minimize the methane production (Ohene-Adjei et al.,
2008). In addition to studies of effects of essential oils on
methanogens, a number of other studies have made indirect
observations based on measurements of VFA production
and VFA proportions (Szumacher-Strabel and Cieslak, 2010;
Vasta and Bessa, 2012).

Several studies have investigated effects of saponins,
tannins and essential oils on rumen fermentation, including
methane production, but only a few have specifically deter-
mined their effects on methanogen population. The most
recent results are presented in Table 1 for saponins, Table 2
for tannins and Table 3 for essential oils.

Conclusions

Studies of the influence of plant bioactive components
(phytochemicals) on methane control in ruminants should be
performed using as far as possible standardized samples.
Natural products like saponins, tannins or essential oils occurTa
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in the plant material as multicomponent mixtures. The
composition of the mixture and quantitative relations of
individual compounds may change under different circum-
stances. The plant variety, time of harvest, climate, water
availability or even sample treatment after plant harvest may
influence qualitative/quantitative relations of the sample.

We can generally conclude that the saponins mitigate
methanogenesis mainly by reducing the number of protozoa;
CTs act both by reducing the number of protozoa and by a
direct toxic effect on methanogens, whereas essential oils
act mostly by a direct toxic effect on methanogens. However,
because the rumen is the complex ecosystem, analysis
of influence of plant components on the populations of
methanogens should take into account not only the total
population of methanogens but also individual orders or
species. Most of tested plant and plant components have
presented their antimicrobial activity in in vitro research
when tested at high doses. The limited scientific information
available from long-term in vivo trials suggested that bene-
fits associated with bioactive components in vitro are not
always obtained in vivo or are diminished over time due,
for example, microbial adaptation. Hence, there is an urgent
need to establish a clear definition of the optimal active
dose of plant components that can be used as additives
for ruminants.
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